A Spectral-Based Approach for BCG Signal Content Classification
نویسندگان
چکیده
This paper has two objectives: the first is to generate binary flags indicate useful frames permitting measurement of cardiac and respiratory rates from Ballistocardiogram (BCG) signals—in fact, human body activities during measurements can disturb BCG signal content, leading difficulties in vital sign measurement; second objective achieve refined segmentation according these activities. The proposed framework makes use approaches: an unsupervised classification based on Gaussian Mixture Model (GMM) a supervised K-Nearest Neighbors (KNN). Both approaches consider spectral features, namely Spectral Flatness Measure (SFM) Centroid (SC), determined feature extraction step. Unsupervised used explore content signals, justifying existence different classes definition hyper-parameters for effective segmentation. In contrast, considered approach aims determine if allows heart rate (HR) (RR) or not. Furthermore, levels are classify human-body into many realistic (e.g., coughing, holding breath, air expiration, movement, et al.). one considers frame-by-frame classification, while one, aiming boost performance, transforms SFM SC features temporal series which track variation measures signal. constitutes novelty this field represents powerful method segment signals activities, resulting accuracy 94.6%.
منابع مشابه
A New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملSFLA Based Gene Selection Approach for Improving Cancer Classification Accuracy
In this paper, we propose a new gene selection algorithm based on Shuffled Frog Leaping Algorithm that is called SFLA-FS. The proposed algorithm is used for improving cancer classification accuracy. Most of the biological datasets such as cancer datasets have a large number of genes and few samples. However, most of these genes are not usable in some tasks for example in cancer classification....
متن کاملA Time-Frequency approach for EEG signal segmentation
The record of human brain neural activities, namely electroencephalogram (EEG), is generally known as a non-stationary and nonlinear signal. In many applications, it is useful to divide the EEGs into segments within which the signals can be considered stationary. Combination of empirical mode decomposition (EMD) and Hilbert transform, called Hilbert-Huang transform (HHT), is a new and powerful ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولA Knowledge-Based Approach to Video Content Classification
A framework for video content classification using a knowledge-based approach is herein proposed. This approach is motivated by the fact that videos are rich in semantic contents, which can best be interpreted and analyzed by human experts. We demonstrate the concept by implementing a prototype video classification system using the rule-based programming language CLIPS 6.05. Knowledge for video...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2021
ISSN: ['1424-8220']
DOI: https://doi.org/10.3390/s21031020